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Abstract We constructed an algorithm, [SInt], for computing some classes of
Cauchy type singular integrals on the unit circle. The design of [SInt] was
focused on the possibility of implementing on a computer all the extensive sym-
bolic and numeric calculations present in the algorithm. Furthermore, we show
how the factorization algorithm described in Conceição et al. (2010) allowed us
to construct and implement the [SIntAFact] algorithm for calculating several
interesting singular integrals that cannot be computed by [SInt]. All the above
techniques were implemented using the symbolic computation capabilities of
the computer algebra system Mathematica. The corresponding source code of
[SInt] is made available in this paper. Several examples of nontrivial singular
integrals computed with both algorithms are presented.
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1 Introduction

In recent years, several software applications were made available to the
general public with extensive capabilities of symbolic computation. These
applications, known as computer algebra systems (CAS), allow to delegate to
a computer all, or a significant part, of the symbolic and numeric calculations
present in many mathematical algorithms. In our work we use the computer
algebra system Mathematica (http://www.wolfram.com) to implement for the
first time on a computer analytical algorithms developed by us and others
within the Operator Theory.

The main goal of this paper is to present the analytical algorithms [SInt] and
[SIntAFact] that compute some classes of Cauchy type singular integrals on the
unit circle. Both algorithms were implemented using the symbolic computation
capabilities of the computer algebra system Mathematica.

Singular integrals are classic mathematical objects with a vast array of
applications in the main scientific research areas (see, for instance, [1, 10, 12,
13, 16, 19]) and the importance of their study is globally acknowledged. There
exist several numerical algorithms and approximation methods for evaluating
some classes of singular integrals. Also, there are several analytical techniques
that allow the exact computation of singular integrals for particular cases.
However, there are no analytical algorithms, written and implemented (up to
our knowledge), for computing singular integrals with general functions.

The implementation of the [SInt] algorithm with the Mathematica system
makes the results of lengthy and complex calculations available in a simple way
to researchers of different areas. Also, the automation of this mathematical
process results in the creation of a previously non-existent functionality of
symbolic computation. Thus, it is the computer algebra system that acquires
new capabilities.

Currently, we are attempting to generalize [SInt] to other types of curves
(namely the real line) and to other classes of singular integrals. We are
also reusing some of its parts to construct new algorithms to solve integral
equations, Riemann–Hilbert problems, and to obtain factorizations of some
special matrix functions.

The source code of the [SInt] algorithm is available as a supplement of the
online edition of this article.

Factorization Theory is closely related to the computation of singular
integrals and its development is stimulated by the need to solve problems
emerging from several fields in Mathematics and Physics (see, for instance,

http://www.wolfram.com
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[2–4, 8, 9, 14, 15, 17]). Recently, we developed for the first time, and partially
implemented on a computer, the generalized factorization algorithm [AFact]
for special classes of rational and non-rational matrix functions [5]. Due to
its innovative character, the implementation of [AFact] potentiates the future
design of algorithms dedicated to specific domains of application [6].

In this paper we describe the [SIntAFact] algorithm which uses [AFact] to
compute Cauchy type singular integrals as a by-product of the factorization of
a matrix function. The singular integrals computed by [SIntAFact] in general
cannot be computed by the [SInt] algorithm. Also, as discussed in Sections 6
and 7, the [SIntAFact] algorithm provides us with extra information about the
class of inner functions. This information can be used to study the properties
of this type of function.

The rest of the paper is organized as follows:
In Section 2 we introduce the notion of Cauchy type singular integral and

describe the calculation techniques for computing some classes of this kind of
integral.

Sections 3 and 6 are dedicated to the formal description of the [SInt] and
[SIntAFact] algorithms, respectively.

In Section 5 we describe how the implementation of the factorization
algorithm [AFact], presented in [5], allows us to construct and implement the
[SIntAFact] algorithm for calculating several interesting singular integrals that
cannot be computed by [SInt].

In Sections 4 and 7, we present several examples of nontrivial singular
integrals obtained with the algorithms [SInt] and [SIntAFact], respectively.

2 Calculation techniques for computing Cauchy type singular integral

In this section we describe some new calculation techniques for computing
Cauchy type singular integrals, on the unit circle T, with an integrand factor
that can be represented as

ϕ(t) = r(t)[x+(t) + y−(t)], (2.1)

where x+ and y−1 are bounded analytic functions in the interior of the unit
circle and r is a rational function without poles on T.

These techniques were implemented on a computer with the Mathematica
software system, thus automating the extensive symbolic and numeric calcu-
lations. The obtained algorithm is called [SInt] and is formally described in
Section 3.

1The overline denotes the complex conjugate of y− in the unit circle.
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Let us consider the singular integral associated with the singular integral
operator

STϕ(t) = 1
π i

∫
T

ϕ(τ)

τ − t
dτ, t ∈ T, (2.2)

with Cauchy kernel, defined on L2(T).
It is known that ST is a selfadjoint, unitary, and bounded operator in L2(T)

(see, for instance, [10, 13]). Thus, we can associate with this operator two
projection operators

P± = (I ± ST)/2, (2.3)

where I represents the identity operator.
Obviously, we have that

ST = 2P+ − I (2.4)

Let us consider H∞(T), the class of all bounded and analytic functions in the
interior of the unit circle and let R(T) denote the algebra of rational functions
without poles on T.

The [SInt] algorithm computes (2.2) when we can represent the function
ϕ(t) as (2.1) where

x+, y− ∈ H∞(T), and r ∈ R(T).

The algorithm uses extensively the properties of the projection operators
(2.3) that emerge when those operators are applied to functions in H∞(T)

(e.g. x+) and in H∞(T), (e.g. y−). [SInt] also explores the rationality of r(t)
for reducing all possible situations to a few basic cases.

After the decomposition of the rational function r(t) in elementary fractions
the singular integrals are computed using (2.4) and the following formulas:

P+[x+(t)(a + bt)n] = b n

[
x+(t)

(
t + a

b

)n −
−n∑
i=1

x(i−1)
+

(− a
b

)
(i − 1)!

(
t + a

b

)i+n−1
]

,

∣∣∣ a
b

∣∣∣ < 1, n < 0 (2.5)

P+
(
y−(t)tn) =

n∑
i=0

y(i)
+ (0)

i! tn−i, n ≥ 0 (2.6)

P+
[
y−(t)(a + bt)n] = b n

[ −n∑
i=1

y(i−1)
− (− a

b )

(i − 1)!
(

t + a
b

)n+i−1
]

,

∣∣∣ a
b

∣∣∣ > 1, n < 0 (2.7)

where x+, y− ∈ H∞(T); a, b ∈ C, b �= 0; n ∈ Z, and we define y+(t) = y−(t)
for any t ∈ T.
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Proof We provide proof only for formula (2.5). Formulas (2.6) and (2.7) can
be demonstrated in a similar fashion.

For the sake of simplicity we define k = −n > 0. It follows that

P+[x+(t)(a + bt)n] = b n P+

[
x+(t)(

t + a
b

)k

]

= b n P+

⎡
⎢⎢⎢⎢⎣

⎛
⎜⎜⎜⎝

x+(t) − x+
(− a

b

)
t + a

b︸ ︷︷ ︸
≡ x1+(t)

+ x+
(− a

b

)
t + a

b︸ ︷︷ ︸
(−)

⎞
⎟⎟⎟⎠

1(
t + a

b

)k−1

︸ ︷︷ ︸
(−)

⎤
⎥⎥⎥⎥⎦

= b n P+

⎡
⎢⎢⎢⎢⎣

⎛
⎜⎜⎜⎝

x1+(t) − x1+
(− a

b

)
t + a

b︸ ︷︷ ︸
≡ x2+(t)

+ x1+
(− a

b

)
t + a

b︸ ︷︷ ︸
(−)

⎞
⎟⎟⎟⎠

1(
t + a

b

)k−2

︸ ︷︷ ︸
(−)

⎤
⎥⎥⎥⎥⎦

. . .

= b n P+
[
xk+(t)

] = b nxk+(t) (2.8)

where xk+(t) is defined analogously to x1+(t) and x2+(t) after k steps.
On the other hand, since | a

b | < 1, in a neighborhood of − a
b , we can write

x+(t) = x+
(
− a

b

)
+ x′

+
(
− a

b

) (
t + a

b

)
+ x′′+

(− a
b

)
2!

(
t + a

b

)2

+ x′′′+
(− a

b

)
3!

(
t + a

b

)3 + . . . (2.9)

and, therefore, we have

x1+(t) = x′
+

(
− a

b

)
+ x′′+

(− a
b

)
2!

(
t + a

b

)
+ x′′′+

(− a
b

)
3!

(
t + a

b

)2 + . . .

x2+(t) = x′′+
(− a

b

)
2! + x′′′+

(− a
b

)
3!

(
t + a

b

)
+ . . .

. . .

xk+(t) = x(k)
+

(− a
b

)
k! + x(k+1)

+
(− a

b

)
(k + 1)!

(
t + a

b

)
+ . . . (2.10)
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Using (2.9) we can rewrite (2.10) as

xk+(t) = x+(t) − ∑k
i=1

x(i−1)
+ (− a

b )

(i−1)!
(
t + a

b

)i−1

(
t + a

b

)k
(2.11)

and, from (2.11) and (2.8) we obtain (2.5). �	

The [SInt] algorithm can be applied to particular functions x+(t) and y−(t)
or it can compute the closed form of (2.2) as a general expression in x+(t) and
y−(t).

There are three options to insert r(t):

1. Input r(t) directly.
2. Input the numerator, and the poles and multiplicities.
3. Input zeros, poles and multiplicities.

We note that, since the poles of r(t) are a crucial information for this cal-
culation technique, in the case of option 1, the success of the [SInt] algorithm
is dependent on the possibility of finding those poles by solving a polynomial
equation.

3 [SInt] algorithm

This section is dedicated to the formal description of the [SInt] algorithm.
In Fig. 1 we present the pseudo code for the [SInt] algorithm. The analysis

of this code and of the corresponding flowchart, presented in Fig. 2, reveals
that the crucial steps of the algorithm are the decomposition of r(t) and the
computation of projections. The calculations involved in these two steps can
become quite lengthy as the expressions of the functions r(t), x+(t), and y−(t)
become larger and more complex. However, based on our experiments with
the algorithm, it is reasonable to expect total execution times in the order of
a few seconds for most inputs (see Section 4 for some examples of execution
times for the [SInt] algorithm).

Fig. 1 Pseudo code for the [SInt] algorithm
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Fig. 2 Flowchart of [SInt] algorithm

As mentioned in Section 1, the [SInt] algorithm was implemented on a
computer using the computer algebra system Mathematica. We note that, after
running the algorithm, the singular integrals ST X(t) and STY(t) are defined as
expressions in closed form and therefore, can be used in further calculations
just like any other function in Mathematica.

The source code of the [SInt] algorithm is available as a supplement of the
online edition of this article.

4 [SInt] examples

We will now present some examples of nontrivial singular integrals. For each
input of functions r(t), x+(t), and y−(t) the [SInt] algorithm computes the
singular integrals ST X(t) and STY(t), where we define X(t) = r(t)x+(t) and
Y(t) = r(t)y−(t).

All the examples were computed on a MacBook with a 2.4 GHz Intel Core
2 Duo processor and 2 GB of DDR3 RAM, running Mac OS X 10.6.8 (Snow
Leopard) in single user mode.

Example 4.1 Let us consider the functions

r(t) = −1 + t − 5t2 + 10t4

5(−4 + t)2t3 ; x+(t) ≡ x+(t); y−(t) = t−k, k � 0

We obtain the singular integrals

ST X(t) = − 128
(
1+t−5t2+10t4

)
x+(t)+(−4+t)2 ((−16−24t+69t2

)
x+(0)−8t

(
(2+3t)x′+(0)+tx′′+(0)

))
640(−4+t)2t3

STY(t) = 2−7−2kt−3−k
(
27+2k+27+2kt−5 27+2kt2+5 44+kt4+(576 − 9940k)t3+k+(−2629 + 2485k)t4+k

)
5(−4+t)2
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Example 4.2 Let us consider the functions

r(t) = i + t4

t2(−2i + t)
; x+(t) = (−i + t)3i; y−(t) ≡ y−(t)

We obtain the singular integrals

ST X(t) = −4i(−i)3i + 12i(−i)3it − (6 + i)(−i)3it2 + 2i(−i + t)3i + 2t4(−i + t)3i

2t2(−2i + t)

STY(t) = −−4t2
(
4 + t2

)
y+(0) − 4t2(−2i + t)y′+(0) + (16 + i)t2 y−(2i) + 2iy−(t) + 2t4 y−(t)

2t2(−2i + t)

where we define, as previously, y+(t) = y−(t) for any t ∈ T.

Example 4.3 Let us consider the functions

r(t) = −1 + t(− i
2 + t

)
(−2i + t)2

; x+(t) ≡ x+(t); y−(t) ≡ y−(t)

We obtain the singular integrals

ST X(t) =
2

(
(−8 + 4i)(−2i + t)2x+

(
i
2

)
+ 9(−1 + t)x+(t)

)

9(−2i + t)2(−i + 2t)

STY(t) = 2
(−9(−1 + t)y−(t) + 2(−i + 2t)

(
((8 + 7i) − (2 − i)t)y−(2i) + (6 + 3i)(−2i + t)y′−(2i)

))
9(−2i + t)2(−i + 2t)

We note that the user may choose not to assign any particular expression to
the input functions x+(t) and y−(t).2 In this case, the obtained singular integrals
are general functions of x+ and/or y−.

In Examples 4.1–4.3, the total execution times are in the order of a few
tenths of a second. This indicates that even for more reasonably complex
inputs the feasibility of the [SInt] algorithm will not be compromised by large
execution times.

5 Computing singular integrals with the generalized factorization
of a matrix function

In this section we describe how the implementation of the factorization
algorithm [AFact], presented in [5], allowed us to construct and implement
the [SIntAfact] algorithm for calculating several singular integrals that could
not be computed by [SInt].

2The [SInt] algorithm always assumes that x+, y− ∈ H∞(T), and r ∈ R(T) and therefore, its the
user’s responsibility to ensure that this is in fact the case.
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Let us consider the special class of matrix functions (see, for instance, [3, 4,
7, 14, 15, 17])

Aγ (b) =
(

1 b
b |b |2 + γ

)
(5.1)

where b is an essentially bounded function on the unit circle, that is, b ∈
L∞(T), and γ is a non-zero complex constant.

The projection operators (2.3) allow us to decompose the space L2(T) in the
topological direct sum

L2(T) = L+
2 (T) ⊕ L−,0

2 (T),

where

L+
2 (T) = ImP+, L−,0

2 (T) = ImP−, L−
2 (T) = L−,0

2 (T) ⊕ C.

A matrix function of the class (5.1) admits a left canonical generalized
factorization in L2(T) if it can be represented as

Aγ (b) = A+
γ A−

γ ,

where

(A+
γ )±1 ∈ [

L+
2 (T)

]
2,2 , (A−

γ )±1 ∈ [
L−

2 (T)
]

2,2 ,

and A+ P+ A−1
+ I represents a bounded linear operator in [L2(T)]2.

A canonical generalized factorization of matrix functions of the type (5.1)
has applications in several scientific research areas (see, for instance, [1, 8, 16]).

In [3, 5] and [7] we presented necessary and sufficient conditions for the
existence of a canonical generalized factorization. Furthermore, we obtained
expressions for an explicit canonical factorization of the matrix functions of
the class (5.1).

Although we have theoretical results for b ∈ L∞(T), we can always assume,
without loss of generality, that b ∈ H∞(T) (see, for instance, [3, 5, 7, 8]).

Let us consider the selfadjoint operator

N+(b) = P+b P−b P+, N+(b) : L2(T) → L2(T). (5.2)

and let ρ (N+(b)) denote the resolvent set of the operator N+(b).

Obviously, if −γ ∈ ρ(N+(b)), then the integral equations

(N+(b) + γ I) u+ = 1 (5.3)

and

(N+(b) + γ I) v+ = b (5.4)

are uniquely solvable.
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We have the following result (see, for instance, [3, 5]).

Theorem 5.1 Aγ (b) admits a left canonical generalized factorization if and
only if −γ ∈ ρ(N+(b)). And, in that case,

Aγ (b) = A+
γ A−

γ , (5.5)

where

A+
γ = γ

(
u+ v+

P+(bu+) 1 + P+(bv+)

)
(5.6)

and

A−
γ =

(
1 − P−(bv+) −P−[b P−(bv+)]

P−(bu+) 1 + P−[b P−(bu+)]
)

. (5.7)

So, the factors A+
γ and A−

γ can be represented using only the solutions u+,
v+ of the non-homogeneous (5.3) and (5.4).

Let Hr,θ denote the set of all the functions of H∞ that can be represented
as the product of a rational outer function r and an inner function θ (i.e., θ

is a bounded analytic function on the interior of the unit circle such that its
modulus is equal to one a.e. on T).

For the case when b ∈ Hr,θ and −γ ∈ ρ(N+(b)) it is possible, by exploring
the properties of the orthogonal projection Pθ = P+ − θ P+θ I [18] and the
rationality of the outer function r(t), to construct an algorithm (see [3, 5]) for
solving some subclasses of integral equations of the type

(N+(b) + γ I) u+ = g+. (5.8)

In particular, it is now possible to solve the homogeneous equation (g+ ≡ 0)
and, therefore, we can know a priori if −γ ∈ ρ(N+(b)). As a follow up, we
constructed and partially implemented the [AFact] algorithm for b ∈ Hr,θ and
−γ ∈ ρ(N+(b)) [5]. In this case, we get the following representation for the
projection entries of A+

γ :

Corollary 5.2 If −γ ∈ ρ(N+(b)) and b ∈ Hr,θ then we can rewrite the second
row of A+

γ as

P+(bu+) = [
P+(|r|2u+) + γ u+ − 1

]
b−1 (5.9)

1 + P+(bv+) = [P+(|r|2v+) + γ v+]b−1 (5.10)

Proof Under the hypothesis −γ ∈ ρ(N+(b)) we know from Theorem 5.1 that
exists the canonical generalized factorization (5.5).

Using (5.6), (5.7), and property P− = I − P+, and assuming that b ∈ Hr,θ

we can rewrite A−
γ as

A−
γ =

(
1 − bv+ + P+(bv+) P+(|r|2v+) − |r|2v+

bu+ − P+(bu+) 1 + |r|2u+ − P+(|r|2u+)

)
(5.11)
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Therefore, from (5.5) we get the relations

u+ + u+ P+(bv+) − v+ P+(bu+) = 1
γ

(5.12)

bu+ P+(bv+) + bu+ − bv+ P+(bu+) = 1
γ

b (5.13)

P+(|r|2v+)P+(bu+) − |r|2v+ P+(bu+) + |r|2u+ − P+(|r|2u+)

+P+(bv+) + |r|2u+ P+(bv+) − P+(|r|2u+)P+(bv+) = 1
γ

|r|2 (5.14)

Solving equalities (5.12), (5.13), and (5.14) for P+(bu+) and P+(bv+) we
obtain formulas (5.9) and (5.10). �	

One of the consequences of this new representation is that now we can
obtain in a straightforward fashion the singular integrals ST(bu+) and ST(bv+),
as the by-product of a canonical generalized factorization. This procedure is
the [SIntAFact] algorithm that we describe in the next section. We note that
the singular integrals obtained by [SIntAFact] cannot be computed, in general,
by the [SInt] algorithm. One important example of this feature is when we
consider θ to be a general inner function (see Examples 7.1 and 7.3).

6 [SIntAFact] algorithm

This section is dedicated to the formal description of the [SIntAFact] algo-
rithm.

In Fig. 3 we present the pseudo code for the [SIntAFact] algorithm. Accord-
ing to Theorem 3.3 in [5] we have that

−γ ∈ ρ(N+(b)) ⇐⇒ κ = 0

where κ is the dimension of the kernel of the operator N+(b) + γ I.
Therefore, in step 2 the algorithm computes k to determine if a left canonical

generalized factorization can be obtained, in accordance with Theorem 5.1.
If that is the case, the [SIntAFact] obtains the singular integrals as a by-
product of the generalized factorization (5.5). This means that, since the
factorization factors cannot be known a priori, we cannot fully predict what
singular integrals the [SIntAFact] algorithm will compute.

Similar to the [SInt] algorithm, it is possible not to assign any particular ex-
pression to the inner function θ and, in this case, the [SIntAFact] assumes that
−γ ∈ ρ(N+(b)), so that a canonical generalized factorization can be obtained
and the corresponding singular integrals can be computed as functions of θ .
Since b ∈ Hr,θ this assumption gives rise to some conditions that must be met
by any particular inner function we may choose subsequently (see Examples
7.1 and 7.2 in Section 7).
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Fig. 3 Pseudo code for the [SIntAFact] algorithm

On the other hand, according to Corollary 2.2 in [5], if γ ∈ C \ R
−
0 then

Aγ (b) admits a left canonical generalized factorization and, in this case, setting
θ as a general expression, generates some conditions that every inner function
must satisfy (see Example 7.3 in Section 7). Therefore, by fixing the value of
γ and choosing several particular θ(t) functions and/or by fixing θ as a general
expression and varying the value of γ over the set C \ R

−
0 , these conditions can

be studied for different rational functions r(t) in order to generate hypothesis
over more general properties of the inner functions themselves.

In summary, we recommend the following procedure for using the
[SIntAFact] algorithm:

1. Choose a value for the constant γ and set the inner function θ as a
general expression. The corresponding singular integrals are computed as
functions of θ .

2. If γ ∈ R
− then particular singular integrals can only be obtained for those

particular inner functions that satisfy some conditions, provided by the
algorithm in step 1.

3. If γ ∈ C \ R
−
0 then Aγ (b) admits a left canonical generalized factorization

and the singular integrals can be obtained for any inner function. In
addition, some conditions that must be satisfied by every inner function are
obtained. These conditions can be studied by varying the value of γ over
the set C \ R

−
0 and by choosing several particular r(t) and θ(t) functions.3

3The [SIntAFact] algorithm always assumes that the function r(t) is an outer function and that the
given function θ(t) is an inner function and, therefore it is the user’s responsibility to ensure that
this is in fact the case for the chosen input.
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Fig. 4 Flowchart of [SIntAFact] algorithm

The flowchart for the [SIntAFact] algorithm is presented in Fig. 4.
As mentioned in Section 1, the [SIntAFact] algorithm was implemented on

a computer using the computer algebra system Mathematica.4

7 [SIntAFact] examples

We will now present some examples of nontrivial singular integrals.
As before, all the following examples were computed in a MacBook with a

2.4 GHz Intel Core 2 Duo processor and 2 GB of DDR3 RAM, running Mac
OS X 10.6.7 (Snow Leopard) in single user mode.

Example 7.1 Let us consider the functions and constant

r(t) = 1
−2 + t

; θ(t) ≡ θ(t); γ = −1
9

For the case when Aγ (b) admits a canonical generalized factorization we
obtain the singular integrals

ST(bu+) =
12(1+t)2(−1+2t)

(
4+3θ(0)

(−θ(−1)+(1+t)θ ′(−1)
))−9tθ̄ (t)(−3θ(0)g(t)+4h(t))

4(−2+t)(1+t)2(−1+2t)θ ′(−1)

ST(bv+) = −4(1 + t)2(−1 + 2t)
(
θ(−1) − 3θ ′(−1)

) + 3tθ̄ (t)g(t)

2(−2 + t)(1 + t)2(−1 + 2t)θ ′(−1)

4We do not make available the corresponding source code in this paper because, the component
responsible for computing the canonical generalized factorization of the matrix function Aγ (b) is
included in another paper by the same authors that is currently awaiting publication.



www.manaraa.com

286 A.C. Conceição et al.

where

bu+ = 9tθ̄ (t)(−3θ(0)g(t) + 4h(t))
4(−2 + t)(1 + t)2(−1 + 2t)θ ′(−1)

bv+ = 3θ̄ (t)g(t)

2
(−2 + 1

t

)
(−2 + t)(1 + t)2θ ′(−1)

and

g(t) = (−2 + t)2θ(−1)2 − 3(−1 + 2t)θ(t)
(−θ(−1) + (1 + t)θ ′(−1)

)
h(t) = (−3 + 6t)θ(t) + (−2 + t)2 (

θ(−1) + (1 + t)θ ′(−1)
)

In this example, the inner function θ must satisfy the condition5 θ ′(−1) �=
0, in order for the singular integrals to be well defined. For instance, we can
choose the well known inner function θ(t) = e

1+t
−1+t (see, for instance, [11]) to

obtain the following

Example 7.2 Let us consider the functions and constant

r(t) = 1
−2 + t

; θ(t) = e
1+t

−1+t ; γ = −1
9

In this case Aγ (b) admits a canonical generalized factorization and we
obtain the singular integrals

ST(bu+) = 3(9 − 8e + 3t)(4 + t(−1 + 4t))
4e(−2 + t)(1 + t)2 − 9e− 2t

−1+t (3 + 2e(−1 + t))(−2 + t)t
2(1 + t)2(−1 + 2t)

ST(bv+) = 10
−2 + t

−
3t

(
−9 + 2e

1+t
1−t (−2 + t)2 + 15t + 6t2

)

2(−2 + t)(1 + t)2(−1 + 2t)

where

bu+ = 27t(9 − 8e + 3t)
4e(−2 + t)(1 + t)2 + 9e− 2t

−1+t (3 + 2e(−1 + t))(−2 + t)t
2(1 + t)2(−1 + 2t)

bv+ =
3t

(
−9 + 2e

1+t
1−t (−2 + t)2 + 15t + 6t2

)

2(−2 + t)(1 + t)2(−1 + 2t)

Example 7.3 Let us consider the functions and constant

r(t) = t − 2i; θ(t) ≡ θ(t); γ = 1

5The necessary conditions for the existence of a canonical generalized factorization of Aγ (b) are
provided explicitly in the output of the [SIntAFact] algorithm. These conditions arise from the
construction of an homogeneous linear system within the factorization of Aγ (b), which we know
to be uniquely solvable in the canonical case (see [5] for a more detailed explanation).
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In this case, since we have chosen γ ∈ C \ R
−
0 , Corollary 2.2 in [5] ensures

that Aγ (b) admits a canonical generalized factorization and we obtain the
singular integrals

ST(bu+) = 8
√

5tθ̄ (z1)

2t f (θ)

+ (−i+2t)(−2i
√

5t(−2i+t)θ(t)θ̄ (z1)−t f (θ)+i(−1+√
5+(1+√

5)θ(z2)θ̄(z1)))θ̄(t)
2t(−1−3it+t2) f (θ)

ST(bv+) = 4it + 10(1 + √
5) + 2(−7 + 3

√
5)θ(z2)θ̄(z1)4 + 2

√
5

f (θ)

− (1 + 2it)(2i
√

5θ̄ (t)θ(z2) + t(−2i + t)( f (θ)t − 2i( f (θ) − θ(z2)θ̄(z1) + 1)))

t(−1 − 3it+t2) f (θ)

where

bu+ =
(1 + 2it)

(
1 − √

5 − θ (z2) θ̄ (z1) − √
5θ (z2) θ̄ (z1) + 2

√
5t(−2i + t)θ(t)θ̄ (z1) − it f (θ)

)
θ̄ (t)

2t
(−1 − 3it + t2

)
f (θ)

bv+ =
(1 + 2it)

(
2i

√
5θ (z2) θ̄ (t) + t(−2i + t)

(
t f (θ) − 2i

(
f (θ) − θ (z2) θ̄ (z1) + 1

)))

t
(−1 − 3it + t2

)
f (θ)

f (θ) = 1 + √
5 +

(
−1 + √

5
)

θ (z2) θ̄ (z1)

z1 = 1
2

i
(

3 + √
5
)

and z2 = 1
2

i
(

3 − √
5
)
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